STATISTICAL APPROACH TO THE
MECHANICAL BEHAVIOR OF
GRANULAR MEDIA

Stéphane Roux

Unité Mixte de Recherche CNRS/Saint-Gobain,
“Surface du Verre et Interfaces”

39 Quai Lucien Lefranc,

93303 Aubervilliers Cedex, France

stephane.roux@sgr.saint-gobain.com

Farhang Radjai

Laboratoire de Mécanique et de Génie Civil,

Université de Montpellier 11,

Place Eugéne Bataillon, 34095 Montpellier Cedex 5, France

radjai@mgc.univ-montp2.fr

Keywords: Granular materials, plasticity, texture, fabric

Abstract  We discuss the quasistatic rheology of ideal granular media consisting
of rigid discs interacting via Coulomb law of friction and perfectly in-
elastic collisions. The macroscopic description of the rheology of qua-
sistatic deformation of such media is rigid-plastic with hardening laws
parametrized with internal variables which have to characterize the ge-
ometry of the assembly. A phenomenological approach is proposed along
these lines. An outline of a microscopic/macroscopic derivation of the
required characteristics is presented. Finally, we list some possible ef-
fects of fluctuations which may limit the precise quantitative success of
this approach.

1. INTRODUCTION

The quasi-static behavior of granular materials is already a mature
field in which a number of elasto-plastic models reproduce very accurately
the available experimental tests. They allow to design civil engineering
structures with confidence. However, this description is essentially based



2

on extensions of the elasto-plasticity of other materials rather than a
microscopic modelling of a granular assembly.(Mréz 98)

On the other hand, focussing on the details of particle interactions, a
considerable progress has been made in recent years through various al-
gorithms which allow to describe different regimes of granular flows. (see
e.g. (Bardet 98; Kishino 99) for a recent review.) The discrete modelling
of granular media allows nowadays very accurate simulation of very stiff
particles up to 10* particles for a significant cumulative strain. In cases
where the accurate modelling of the contact and of the particle properties
is less stringent, more than one million grains can be taken into account.
The interest of this approach is that it allows also to follow the response
of a granular assembly subjected to uniform stress or strain. In this
context, the use of bi or tri-periodic (resp. in two or three dimensions)
boundary conditions is an important achievement allowing to reduce sig-
nificantly the role of walls. We are thus now in a suitable position to
answer questions pertaining to the characterization of the geometry of
the packing (and hence eventually to answer unsolved issues such as the
orientation of localization bands), to address the role of fluctuations, to
measure the effective stress carried by a specific granulometric class in a
packing (relevant for fragmentation), ..., issues which are clearly out of
reach within today’s continuum modelling.

With this motivation in mind, one is naturally invited to have a fresh
look at the continuum modelling and to progress in the direction of intro-
ducing geometric information in the macroscopic modelling, even if such
an approach will inevitably lead first to a deterioration in the accuracy of
the macroscopic modelling. The hope is that, after some time and effort,
one may achieve a more satisfactory description in terms of connections
to the microscopic reality and still with a fair account for experimental
tests.

2. A MODEL SYSTEM

In the following, we will focus on the simple model of a granular as-
sembly of rigid discs in two dimensions. These particles interact only
via a hard core potential (no adhesion), and Coulomb friction law with
a single coefficient of friction. When numerical simulations are used, a
slight polydersity is introduced in order to avoid the crystalization of
the system which is a specific feature of two-dimensional systems. How-
ever, in our theoretical description we ignore the polydispersity and the
particles will be characterized by a single average radius R.
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2.1. GENERAL REMARKS CONCERNING
THE MACROSCOPIC MODELLING

The particles being considered as rigid and with no adhesion, the
macroscopic behavior has to be rigid-plastic. Therefore, the domain of
admissible stresses D, where the medium is rigid, with its boundary 9D,
where plastic flow may take place, has to be specified. The absence of a
stress scale imposes moreover that D is a cone in stress space.

The Coulomb friction law itself can be seen as a rigid-plastic behavior.
Within this framework, the Coulomb friction does not obey the normality
rule, and hence the macroscopic modelling has to be a non-associated
plastic behavior. Therefore, the direction of the plastic strain rate has
to be specified independently from D.

The plastic flow rule as well as the yield stress have to be defined as
a function of the internal variables which characterize the state of the
medium. When considered at the microscopic scale, it is obvious that this
state is only defined through its geometry, i.e. the spatial organization of
particles with respect to each other, and hence it is natural to require that
internal variables have a simple geometrical interpretation. Although
this statement seems quite obvious, it readily disqualifies a number of
macroscopic descriptions used at present.

Stated simply, the fundamental difference between a microscopic mod-
elling as compared to a macroscopic one lies in the number of internal
variables. Going from the micro to the macro-scale, we wish to preserve
only a few of them, enough to characterize precisely the geometrical state
of the assembly and not too many so as to be able to have an efficient
formulation and a limited number of parameters to adjust through fit-
ting rheological responses or microscopic considerations. As usual, the
choice of pertinent state variables is the crucial issue which often results
from a compromise between accuracy and simplicity. In order to high-
light this compromise, we proceed in three steps. First, we apply the
above stated constraints to the formulation of a (trivial) rigid plastic
description with no internal variable. Then, we go one step further and
incorporate a single scalar internal variable. Finally, we add the fabric
to the description. We will see that the incorporation of more and more
variable leads to a progressively richer description. We will sketch the
outline of a systematic procedure.

Coming back to the macroscopic description, in order to arrive at
a complete formulation we have to specify three points: 1) A yield
stress parametrized by the internal variables; 2) A plastic flow rule
parametrized by the internal variables; 3) A “hardening” law which de-
scribes the incremental evolution of internal variables with plastic strain.
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3. NO INTERNAL VARIABLE

The most elementary choice is to assume that no internal variable
is necessary. In this case, there is obviously no need for a “hardening
law”. The medium has to be assumed isotropic (otherwise the anisotropy
parameters would constitute internal variables). In two dimensions, the
requirement of objectivity implies that the domain D is a function of
stress invariants. The easiest case refers to the principal stresses, i.e.
a two dimensional description of the stress space. Then, D is a cone
whose axis has to lie along the isotropic pressure direction. Thus, a
single parameter is required, that quantifies the relative magnitude of
the deviatoric stress with respect to the average stress (trace). This
single parameter can be rephrased in terms of the classical friction angle
¢ in the Mohr-Coulomb framework.

For similar reasons, the plastic flow rule consists in defining the relative
amount of dilation/contraction with respect to the deviatoric part of the
plastic strain rate. Since the macroscopic description should hold for an
arbitrary large cumulative strain, the only physically admissible choice
is to require that the plastic strain is isochoric, or

tr(g,) =0 (1.1)

This corresponds to the fact that the internal state of the granular
medium is assumed to be unique, and thus it has a well-defined packing
fraction that is independent of its prior deformation history. Moreover,
along the plane where the Mohr-Coulomb criterion is reached, the axial
strain has to be zero. This defines uniquely the relative orientations of
the principal axes of the strain rate and stress.

The above considerations are sufficient to fully determine the macro-
scopic bahaviour of the medium in two dimensions. In particular, this
shows that a single scalar parameter is needed, the Mohr-Coulomb fric-
tion angle. It is obvious that the resulting description is very crude.
Nevertheless, in cases where the cumulative shear strain is large (e.g.
surface flow in avalanches, ...), this level of description may prove quite
sufficient. The unique state of the medium corresponds to the “critical
state” of soil mechanics reached after a sufficiently large deformation.

(Schofield and Wroth 68)

4. ONE INTERNAL VARIABLE

Let us now try to add some information about the geometrical state
of the medium. The first and most obvious property pertaining to the
geometry of a granular packing is the packing fraction ¢, defined in two
dimensions as the fraction of surface covered by the particles. A number
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of equivalent variants such as void ratio, density of particle centers, global
density and porosity may be used instead.

We can proceed as in the previous case but using ¢ as an internal
variable for the yield surface and for the plastic flow direction. The yield
surface is still parametrized by a friction angle, but now the latter is a
continuous (increasing) function ¢(c) of ¢. Concerning the direction of
the incremental plastic strain, dilation and contraction are now admissi-
ble. The ratio of the spherical part to the deviatoric part of the plastic
strain-rate tensor £, defines a dilation angle, 1(c).

. €1+ €2

sin() = E— (1.2)
where 1 are the two eigenvalues of £,. In the absence of internal
variables we argued that ¥ = 0. Following the same argument, one
infers that there should exist a specific packing fraction ¢*, such that

() = 0 (1.3)

This packing fraction characterizes then the critical state.

Now, a hardening law has to be specified. It should describe the way
¢ evolves under an increase of plastic strain. In the present case, this
evolution law is dictated by the very definition of our internal variable,
namely

g = —tr(2,) (1.4)

This description provides already a more detailed description of the
transient stages leading to the critical state. One also recovers the pre-
vious model if only large strains are considered. The price to pay for
this more accurate description is that we have to specify two functions
¢(c) and 1(c). There we have different routes at our disposal: either we
consider a purely phenomenological approach and thus we try to identify
these functions from simple tests(Schofield and Wroth 68) or we may
try to relate those functions to a microscopic description of the pack-
ing. Eventually, we could also combine both approaches by using part of
the information from the micro-scale and identify only a few parameters
from experiments. Along the latter direction, one could for instance use
Taylor’s hypothesis(Taylor 48) in order to relate the two functions ¢(c)
and 1 (c) together, and measure then only one of them experimentally.
We will come back to this issue after the following section devoted to a
richer description of the geometrical state of the medium.

In order to simplify the analysis and the number of parameters to be
introduced, we may focus on the neighborhood of the critical state and
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Taylor-expand the functions of interest. This leads to a simple three-
parameter description, based on ¢(c*), d¢/dc(c = ¢*), di/dc(c = ¢¥).
(Roux and Radjai)

An interesting point to note is that this approach naturally leads to the
occurence of localization in a dense granular medium. We will however
not enter this issue which would require lengthy developments.

5. FABRIC AS STATE VARIABLES

The previous modelling predicts that once the system has reached its
critical state, it remains in this state for all direction of shearing. This is
not what is observed experimentally. In particular, if the shear is simply
reversed, one typically observes a long transient deformation where the
system evolves towards a new critical state.

This clearly indicates that a scalar internal variable such as ¢ (which is
unable to encode a specific anisotropy of the medium) is insufficient for
the description of the state of the medium. From symmetry arguments,
the most elementary object which may characterize such an information
is a second order tensor. The latter has to be built from a statistical
information describing pairs of particles. Moreover, assuming that the
required information is local, one should focus on particles in contact.

These remarks point to the internal variables pertaining to the distri-
bution of contact normals. Let us consider the probability distribution
of contact normals p(#). This is the probability that a given particle has
a contact along the direction parametrized by 6, the polar angle of the
contact normal 7. The function p(#) is m-periodic and it can be Fourier
expanded as(Rothenburg and Bathurst 89)

p(0) = A+ Bceos(2(60 —6,)) + h.o.t. (1.5)

Truncation of the Fourier expansion after the second term provides the
most salient features of the texture of the medium. In a totally equivalent
fashion, one could simply construct the classical fabric tensor F' = (7®@7)
where the brackets denote averaging over all particles in a representa-
tive element of volume, and @ is the dyadic (tensor) product.(Satake
82) While the fabric tensor is often normalized with respect to the total
number of contacts, here we choose to normalize it by the number of
particles. In other words, in our case A = z/7, where z is the coordina-
tion number. Assuming that the latter is simply related to the packing
fraction, we see that the three descriptions considered above can be seen
as retaining more and more terms (0, 1 or 2) in the Fourier expansion of

p.
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Let us now characterize all the required information to obtain a com-
plete mechanical description of the behaviour using A, B and 6, as in-
ternal variables:

Yield stress: Since the medium has some anisotropy, a single fric-
tion angle is no more appropriate. However, in order to keep close
to the concepts used within the previous cases, we consider all po-
tential slip planes characterized by a polar angle # of the normal
to the slip plane. The largest ratio of the tangent to the normal
stress which can be supported by this plane naturally defines a
friction angle that is a function of # and the above three internal
variables. Galilean invariance implies that only the difference 6 -8,
is meaningful. We thus have to specify the function

o=0¢0 -6, A B) (1.6)

Plastic strain rate: Similarly, along each potential slip plane we can
characterize the orientation of the relative velocity of two points
aligned perpendicular to the slip plane. This defines a dilation
angle 1 which as before depends on 6 and the internal variables,
i.e.

¢:¢(0_OP7A7B) (1'7)

Hardening rule: A hardening rule here means that A, B and ép,
are functions of their current value, of the incremental plastic strain
£p, but also of the rotation w, i.e. the antisymmetric part of ve-
locity gradient, because of the induced anisotropic texture of the
medium. This hardening law should account for the advection of
contacts in the plastic flow, as well as the creation and opening of
contacts. A last constraint to be taken into account comes from
the quasistatic nature of the loading we are interested in. This
implies that the rheology should be rate independent, i.e. time as
such should not play a role in those equations. Thus A (as well
as all other such rates) should depend on £, through a positively
homogeneous function of degree 1.

As in the previous case, there are now different routes to follow ac-
cording to different strategies. Again, one possible route is a purely
phenomenological approach with the perspective of identifying all the
required information from tests. There still some basic principles should
be used to constraint the hardening rule. However, due to the crowd-
ing of internal variables this task is quite challenging. A second route
is to circumvent first the form of the possible dependencies by means of
expansions around special values of the internal variables, such as the
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isotropic case B = 0 or, alternatively, around values which would corre-
spond to the “critical states”. We use the latter in plural form because
the critical state may well depend, for instance, on the relative rotation
rate with respect to the deviatoric strain rate, i.e. the critical state under
pure shear may differ from the critical state under simple shear. To be
more precise, we may assume that, if the deviatoric part of the fabric
tensor is reasonably small, ¢ may be expanded as

o0 -6, A, B)=ao+ a1 A+ ayBcos(2(0 — 0,) + as) (1.8)

so that the determination of the full function of three parameters is
reduced to four scalar parameters a; for e = 0,...,3.

Another possible strategy is to resort to the microscopic world in order
to identify the above-listed unknown functions. We now discuss some
elements along this direction.

6. MICRO-MACRO TRANSITION

At the macroscopic level, we deal with stress and strain as continuous
fields. However, at the particle level, we have a discrete set of forces
transmitted by the interparticle contacts and velocities of particles. The
connection between these two levels of description has been the subject
of intensive work. A clear review of different proposed relations has been
presented by Bardet.(Bardet 98) Let us first recall very briefly a few
essential results.

6.1. FROM DISCRETE TO CONTINUOUS

The first key point is to define the average stress over any domain
which encompasses an arbitrary number of particles. This can be done
consistently down to the scale of one single particle. Let us label each
contact around one particle by an index 7, and denote the unit normal
vector by 7; and the force transmitted at the contact by ﬁ The stress
which characterizes the particle is(Cundall and Strack 79)

R -
Uzgzﬁi(@fi (1'9)

where S is an area associated with the particle from a Voronoi construc-
tion from particle centers. This expression exploits the fact that the
particles are at rest and no torque is transmitted at the contacts. We
have assumed that the particles are circular with a radius E. We see
that the transition from forces to stress requires the definition of a repre-
sentative environment of a particle where each neighbor is specified, i.e.
a “node” of the contact network.
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The analogous treatment of the displacement field is somewhat more
subtle. The main point is that the object in which we are interested at
the macroscopic scale is the displacement field particle centers. Whether
a particle rotates or not will affect the velocity of a material element in
the grain, but not the overall displacement. Thus, the strategy usually
adopted in this respect is to construct a continuous field from an inter-
polation of the velocity field which matches exactly the particle velocity
at the particle center.

The standard technique is again to resort to a tesselation of space
with polygons whose vortices are the particle centers, and whose edges
connect the contacting particles. Once the problem is reduced to the
estimation of the average strain inside an elementary polygon whose
boundary velocity is prescribed, the solution is standard.(Kruyt, 1996)
As in the case of force/stress relation, here we need a representative
elementary structure which is a polygon formed by contiguous particles,
what will be refered to as a “cell” in the sequel.

6.2. ENVIRONMENTS: NODES AND CELLS

A major difficulty is that, as discussed above, the macroscopic descrip-
tion of the geometrical state of a granular medium is based on the fabric
represented by p(#) (including a more or less severe truncation). How-
ever, in order to construct the two elementary tensors, we have to deal
with nodes or cells and this requires a richer information. For instance, a
node is characterized by its coordination number z and the orientations
A1, -, 0. of its contact normals. Thus, we need the probability distribu-
tions p. (61, ..., 8.). The corresponding issue is trivially written in similar
terms for the cells.

In order to construct these representative environments, we have to
propose an “educated guess” for these multicontact distributions. An
easy solution is to assume the most “disordered” situation, i.e.

pa(b1,....0:) = ﬁp(@i) (1.10)

In our case, this solution is obviously wrong since a contact in the direc-
tion #; with a given particle impedes other contacts to be established in
a direction 6; such that |8; — 0;| < 7/3, hence

pz(el,...,ez) =0 if |02'—0]‘| < 7T/3 (1.11)

Here, the strategy that we propose is still to resort to a similar “most
disordered” situation, provided these steric constraints are taken into
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account. Operationnally, this translates into the maximization of an
entropy functionnal Sp.] under constraints. The entropy, S, is classically

defined as
Slp) = [ o [ 00D 108 p- (10116} (112

and S is maximized over the set of functions that 1) fulfill the steric
hindrance conditions, Eq. 1.11, and 2) whose partial summation over
all but one angle gives back the known p(#). The second constraint is
imposed through Lagrange multipliers. Let us introduce H(6), a 27-
periodic function such that H(6) = 0 for |#| < 7/3, and else H = 1. It
can be shown that p, takes the following form:

p-({0:}) = (H H(0; - 91)) 1T 9(6x) (1.13)
oy &

The unknown function ¢ is then determined from an implicit equation
resulting from the resummation condition (2), and whose solution can
be obtained from a simple iterative scheme. Note that without steric
hindrance the simple solution p, =[] p(#;) is recovered.

We note that not all values of A and B in the truncated form of p
admit a solution. The condition is that

f+n/6
/ p(0)d6 < 1 (1.14)
6—7/6

which simply states that no more than one contact can be found in any
sector of opening angle 7/3. Using the simple truncated form Eq. 1.5,
we obtain

V3

o
—A+YXZB<1 1.15

which together with the condition B < A (no negative probability), give
the domain of physically accessible values of the fabric.

7. YIELD STRESS AND PLASTIC STRAIN
DIRECTIONS

The previous section proposed an operational way of generating repre-
sentative nodes (and using a similar construction, cells) with acceptable
statistics, i.e. consistent with the known information concerning fabric.
Thus, we have now a key which will allow us to compute the yield stress.
From the previous discussion, we have to compute the maximum allowed
deviatoric stress for all orientations of the principal axes of stress with re-
spect to that of the fabric. We propose a Monte-Carlo procedure, which
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consists in generating a large collection of node configurations with the
computed statistics. Then, for fixed orientation and trace of the stress
tensor we compute the maximum value of its deviatoric component that
can be obtained from the contact forces with the following constraints:
1) The forces are balanced; 2) They yield the imposed stress when using
Eq. 1.9; 3) Each force fulfills Signorini (no traction) and Coulomb condi-
tions. A simple average over the configurations gives an estimate of the
searched yield surface.

A similar procedure can be designed for the strain. Cells are generated,
and for each configuration the minimal dilation angle for a principal
strain orientation is computed. This is done by computing an admissible
set of particle center velocities that is consistent with the average strain,
and with the steric exclusion conditions. An average over configurations
gives the searched dilation angle.

8. HARDENING RULE

We still have to address the final point which is the hardenning rule,
i.e. the evolution of the fabric, in terms of p(#) or fabric tensors as
a function of strain. The two effects to take into account are 1) the
advection of contacts by the plastic flow, 2) the induction (gain or loss)
of contacts.(Roux and Radjai) We can write the time evolution of p(6)
as a balance equation:

dp(0

% +div(J(8)) = () (1.16)
where the divergence operator is simply 0/96, J is the contact “current”
and [ the induction term. The mean velocity field with respect to a parti-
cle center in polar coordinates is written (u(r, ), v(r,)). For contacting
particles, where r = 2R, the mean velocities are written (U(#),V (0)).
The expression of the contact current is thus simply written as
V()
J(0) =p(0) ==~
(0) = p(0) 0

The Signorini condition requires that I/ > 0. Galilean invariance dic-
tates that the effect of a rotation rate & should come into play only
in the tangential component, as V(#) = éV () + 2Rw, and v(r,§) =
dv(r,8) + re. We note that current can also be split in two contribu-
tions, J = J,. + Js, one part from the rotation, and one from the pure
deformation term. Extracting the rotation term from the current, we
can rewrite the l.h.s. expression of the balance equation as

o) | ., _ opl0) _ dp(6)

6 = o+ div(J,(6) = —o - div(J,(9)) (1.18)

(1.17)
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where the total time derivative includes the rotation term. With this in
mind, we can now safely ignore the rotation effect.

The velocity field for non contacting particles can be deduced simply
from a mean-field assumption since no direct steric constraints are at
play. Thus u and dv are directly related to &,.

The induction term I consists of a creation I, of contacts, and an
opening term [_, with [ = I, — I_. The creation of contacts involves
the non-contacting normal velocity when the latter is negative, and the
probability that a given particle lies in the region sufficiently close to
reach the reference particle. This involves the packing fraction, through
the areal density of centers ¢/ (7w R?). The creation term is written

2¢
1,(0) = ——[u(2R,8)]_ 1.19
+(6) = ~ o [u(2R, 0] (119
where [...]_ denotes the negative part of the velocity. The contact open-
ing term is

1-(6) = p(O)U(6) (1.20)

Up to now, we have specified all terms except the contacting velocities
(U,6V). They are obviously related to (u,dv) through a geometric func-
tion which is positively homogeneous of degree one, because of the rate
independence. This could be computed together with the direction of
the plastic strain rate, because at this stage we generate a representative
set of local configurations where we have access to the relative particle
velocities.

Alternatively, we may consider two arbitrarily remote particles along
a given direction, which can be reached through a path of contacting
particles. When the particles are sufficiently far from each other, their
relative velocity is equal to the macroscopically determined one. How-
ever, it is also equal to the sum of the relative contacting particles along
the path. This contraints (U, dV) to be equal to (u,dv) when averaged
over an interval of angles which allows for the existence of a path. This
allows the deficit in negative U values to be compensated by a larger
value of V' at a different angle. The difference between dV and dv, i.e.
the deviation from mean field, may be interpreted as some kind of diffu-
sive contribution to the current due to the steric hindrance transmitted
through particles outside our “shell” description.

This section has been written directly in terms of the entire distribu-
tion p(#) and not its truncated Fourier expansion. In order to express
the hardening equations in terms of A, B and 8, it suffices to consider
weak formulations of the latter by multiplying Eq. 1.16, by 1, cos(26) and
sin(26), and integrate over all angles #. Then, a term-by-term identifica-
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tion gives a direct transcription corresponding to the reduced description
of the fabric.

Let us finally mention an additional important point. We pointed
out that the fabric p(#) is restricted by geometrical constraints (see e.g.
Eq.1.15) at the particle level. However, these constraints do not appear
in the present hardening rules so that they might be violated if one
proceeds along the proposed route. A consistent way to circumvent this
difficulty is to require that the fabric always lies in the admissible domain.
This will in turn generate an admissible set of plastic strain increments.
The latter may thus be used to define the plastic flow rule. This would
constitute an alternative way to end up with a consistent rigid-plastic
formulation, and it would by-pass the stage which consists in generating
representative “cells”. In other words, it would exploit different ways of
relating the relative velocities of contacting particles to the mean strain
field, through paths rather than elementary cells.

9. EFFECTS OF FLUCTUATIONS

In this section, we briefly discuss potential limitations to the scheme
proposed above, as inferred from numerical observations. Most of these
difficulties result from fluctuations either in time or in space that have re-
ceived in the past a much more limited attention than average behaviors.
Indeed, the above scheme is based at each time step on rest configura-
tions. However, when running numerical simulations we observe that
from time to time the system reaches unstable points where a dynamical
rearrangement of particles has to take place. In this dynamical phase,
inelastic collisions dissipate the potential energy drop, (i.e. the work of
the loading forces), due to the reorganization of the assembly.

The cumulative effect of these restructuring events may have paradox-
ical effects. In particular they can produce an effective mean dissipation
which is “Coulomb™like even for ideal frictionless particles. Indeed, we
can imagine that averaging the instantaneous dilation rate during a long
steady shear strain (once the steady state has been reached) over all rest
configurations, we may obtain a positive value which is exactly counter-
balanced by the compression taking place during these unstable events.
The dynamics of restructuring being much faster than any external load-
ing (quasistatic condition), the (time averaged) dissipation appears to be
rate independent. Moreover, the dissipation at each event is equal to the
external work accumulated prior to the event. Therefore, the dissipation
is simply proportional to the external loading. Both of these features
characterize a solid “Coulomb” friction.
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It is amusing to note that a similar explanation based on elastic as-
perity interactions is at the heart of microscopic physical modelling of
friction.(Caroli 96; Tanguy 98) Trying to quantify the above effect in a
more realistic case, we quantified the relative part of dissipation due to
inelastic collisions, as compared to the total dissipation, i.e. including
contact friction (for an interparticle coefficient of friction p = 0.5). The
resulting ratio was close to 30% due to retructuring events. This effect
being absent from the proposed description, the effective macroscopic
friction angle is at best off by this amount if a global dissipation balance
is performed. In contrast, an analysis of experimental results based on
instantaneous values of the stress may be in much closer agreement.

Fluctuations may be important for basically two reasons. The first one
is their amplitude relative to the mean, and the second is the existence of
long-range correlations which may be present either in time or space and
which may affect very significantly the validity of the proposed approach.
In order to investigate the latter, we studied the trajectory of particles in
a simple shear test. The analysis of the fluctuating part of the displace-
ment and of the distance between two neighboring particles reveals the
existence of long-range temporal fluctuation which give rise to an anoma-
lous diffusion regime. Similarly, the instantaneous strain field displays
also large scale inhomogeneity which were unexpected. These observa-
tions which are not taken into account in the approach we presented
may potentially invalidate a quantitative agreement between theory and
numerical or experimental tests.

10. CONCLUSIONS

We presented a systematic approach to progressively enrich a descrip-
tion of the mechanical behavior of a granular medium both from macro-
scopic and microscopic (particle level) points of view. This constitutes
a template and a number of these elementary steps have still to be vali-
dated in particular from detailed numerical simulations. We proposed an
original scheme based on entropy maximization that allowes to generate
representative environments around particles, an essential step for deter-
mination of the yield stress or the plastic strain rate direction. We also
proposed a simple “shell model” description of the velocity field around
a particle which allowes to obtain an evolution equation for the fabric.

Finally, we pointed out some potential difficulties of this kind of ap-
proach where salient aspects of fluctuations, not included in the theo-
retical approach, may affect the accuracy of the description. Neverthe-
less, the global framework, i.e. the form of the equations, should be
unaffected. A macroscopic description of these fluctuations might thus
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appear a necessary step for a complete description, and that is, in our
view, a major challenge for the future.
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