Numerical modeling of discrete media

Multi-periodic boundary conditions and the Contact Dynamics method

Farhang Radjai

For investigating the mechanical behavior of granular materials by means of the discrete element approach, it is desirable to be able to simulate representative volume elements with macroscopically homogeneous deformations. This can be achieved by means of fully periodic boundary conditions such that stresses or displacements can be applied in all space directions. We present a general framework for periodic boundary conditions in granular materials and its implementation more specifically in the Contact Dynamics method.

On inconsistency in frictional granular systems

Pierre Alart, Mathieu Renouf

Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part III: extension to non-convex particles modelled as glued convex particles

Andriarimina Daniel Rakotonirina, Jean-Yves Delenne, Farhang Radjai, Anthony Wachs

Large-scale numerical simulation using the discrete element method (DEM) contributes to improving our understanding of granular flow dynamics involved in many industrial processes and geophysical flows. In industry, it leads to an enhanced design and an overall optimization of the corresponding equipment and process. Most of the DEM simulations in the literature have been performed using spherical particles. A limited number of studies dealt with non-spherical particles, even less with non-convex particles. Even convex bodies do not always represent the real shape of certain particles. In fact, more complex-shaped particles are found in many industrial applications, for example, catalytic pellets in chemical reactors or crushed glass debris in recycling processes. In Grains3D-Part I (Wachs et al. in Powder Technol 224:374–389, 2012), we addressed the problem of convex shape in granular simulations, while in Grains3D-Part II (Rakotonirina and Wachs in Powder Technol 324:18–35, 2018), we suggested a simple though efficient parallel strategy to compute systems with up to a few hundreds of millions of particles. The aim of the present study is to extend even further the modelling capabilities of Grains3D towards non-convex shapes, as a tool to examine the flow dynamics of granular media made of non-convex particles. Our strategy is based on decomposing a non-convex-shaped particle into a set of convex bodies, called elementary components. We call our method glued or clumped convex method, as an extension of the popular glued sphere method. Essentially, a non-convex particle is constructed as a cluster of convex particles, called elementary components. At the level of these elementary components of a glued convex particle, we employ the same contact detection strategy based on a Gilbert–Johnson–Keerthi algorithm and a linked-cell spatial sorting that accelerates the resolution of the contact, that we introduced in [39]. Our glued convex model is implemented as a new module of our code Grains3D and is therefore automatically fully parallel. We illustrate the new modelling capabilities of Grains3D in two test cases: (1) the filling of a container and (2) the flow dynamics in a rotating drum.

Three-dimensional bonded-cell model for grain fragmentation

David Cantor, E Azéma, Philippe Sornay, Farhang Radjaï

We present a three-dimensional numerical method for the simulation of particle crushing in 3D. This model is capable of producing irregular angular fragments upon particle fragmentation while conserving the total volume. The particle is modeled as a cluster of rigid polyhedral cells generated by a Voronoi tessellation. The cells are bonded along their faces by a cohesive Tresca law with independent tensile and shear strengths and simulated by the contact dynamics method. Using this model, we analyze the mechanical response of a single particle subjected to diametral compression for varying number of cells, their degree of disorder, and intercell tensile and shear strength. In particular, we identify the functional dependence of particle strength on the intercell strengths. We find that two different regimes can be distinguished depending on whether intercell shear strength is below or above its tensile strength. In both regimes, we observe a power-law dependence of particle strength on both intercell strengths but with different exponents. The strong effect of intercell shear strength on the particle strength reflects an interlocking effect between cells. In fact, even at low tensile strength, the particle global strength can still considerably increase with intercell shear strength. We finally show that the Weibull statistics describes well the particle strength variability.

A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method

Hadrien Laubie, Farhang Radjaï, Roland Pellenq, Franz-Josef Ulm

Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith’s approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.